Документ подписан простой электронной подписью

Информация о владельце: ФИО: Романчук Иван Сергеевич

Должность: Ректор

Дата подписания: 25.12.2024 11:00:29 Уникальный программный ключ:

6319edc2b582ffdacea443f01d5779368d0957ac34f5cd074d81181530452479

Приложение к рабочей программе дисциплины

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Наименование дисциплины Математическая статистика

Направление подготовки /

Специальность

38.03.01 Экономика

Направленность (профиль) /

Специализация

Прикладная экономика

O Π BO

Форма обучения очная

Разработчик Мерзлякова А.Ю.,

профессор научно-учебной лаборатории исследований рынка труда

1. Темы дисциплины для самостоятельного освоения обучающимися Отсутствуют.

2. План самостоятельной работы:

№ п/ п	Учебные встречи	Виды самостоятельной работы	Форма отчетности / контроля	Количе ство баллов	Рекомен дуемый бюджет времени на выполне ние (ак.ч.)
1	Некоторые одномерные распределения,	1. Проработка лекций	Опрос на практическом занятии	1	1
	используемые в математической статистике	2. Подготовка к практическому занятию	Решение задач	1	2
2	Основные понятия статистики	1. Проработка лекций	Опрос на практическом занятии	1	1
2		2. Подготовка к практическому занятию	Решение задач	1	2
	Статистическое оценивание неизвестных	1. Проработка лекций	Опрос на практическом занятии	1	1
3	параметров распределений	2. Подготовка к практическому занятию	Решение задач	1	2
		3. Подготовка к контрольной работе	Контрольная работа	-	7
		4. Выполнение расчетного задания	Представление и защита работы	15	34
4	Доверительные интервалы	1. Проработка лекций	Опрос на практическом занятии	1	1
_		2. Подготовка к практическому занятию	Решение задач	1	2
5	Статистическая проверка гипотез	1. Проработка лекций	Опрос на практическом занятии	1	1
		2. Подготовка к практическому занятию	Решение задач	1	2
6	Непараметрически е критерии	1. Проработка лекций	Опрос на практическом занятии	1	1
		2. Подготовка к практическому	Решение задач	1	2

		занятию			
	Дисперсионный анализ	1. Проработка лекций	Опрос на практическом занятии	1	1
7		2. Подготовка к практическому занятию	Решение задач	1	2
		3. Подготовка к контрольной работе	Контрольная работа	-	7
		4. Выполнение расчетного задания	Представление и защита работы	15	34
8	Введение в Байесовские методы	1. Проработка лекций	Опрос на практическом занятии	1	1
0		2. Подготовка к практическому занятию	Решение задач	1	1
9	Подготовка к дифференцирован ному зачету	Изучение материалов по дисциплине по вопросам к зачету	Контрольная работа	-	9
	Итого			46	114

3. Требования и рекомендации по выполнению самостоятельных работ обучающихся, критерии оценивания

Вид Выполнение расчетного задания

Краткая характеристика - задания носят разноплановый характер, нацелены на приобретение студентами навыков применения инструментальных средств для обработки данных и построения эконометрических моделей; анализа и интерпретации полученных результатов.

Рекомендации по выполнению: решение расчетных заданий рекомендует оформлять в рукописном варианте с приведением формул, всех необходимых расчетов, а также каждый расчет должен сопровождаться обоснованным статистическим выводом.

Пример первой расчетной работы:

Задача 1

Имеется случайная выборка X_1, \dots, X_n из закона распределения, заданного функцией плотности:

$$f(x) = \begin{cases} \frac{3x^2}{\theta^3}, & 0 \le x \le \theta, \\ 0, & \text{uhave.} \end{cases} \quad \theta > 0.$$

- а) Найдите $P(1 < X_1 < 3)$, если параметр $\theta = 4$.
- б) Проверьте на несмещённость оценку $\hat{\theta} = \frac{3X_1 + X_2 + X_3}{10}$ для параметра θ .
- в) Постройте оценку параметра θ методом моментов.

Задача 2

Имеется случайная выборка X_1, \dots, X_n из закона распределения, заданного функцией

плотности:

$$f(x) = \begin{cases} \frac{4x^3}{\theta^4}, & 0 \le x \le \theta, \\ 0, & \text{uhave.} \end{cases} \quad \theta > 0.$$

- а) Найдите $P(1 < X_1 < 2)$, если параметр $\theta = 3$.
- б) Проверьте на несмещённость оценку $\hat{\theta} = \frac{X_1 + 2X_2 + 3X_3}{4}$ для параметра θ .
- в) Постройте оценку параметра θ методом моментов

Задача 3

Пусть $X = (X_1, ..., X_n)$ случайная выборка из распределения Рэлея с плотностью распределения

$$f(x;\theta) = \begin{cases} \frac{x}{\theta} \cdot e^{-\frac{x^2}{2\theta}}, & x \ge 0, \\ 0, & x < 0, \end{cases} \quad \theta > 0.$$

Найдите при помощи метода моментов оценку неизвестного параметра θ по первому начальному моменту

Задача 4

Пусть $X = (X_1, ..., X_n)$ случайная выборка из распределения с функцией распределения $F(x;\theta) = 1 - e^{-\frac{x^2}{\theta}}, \quad x \ge 0, \; \theta > 0$. При помощи метода максимального правдоподобия найдите оценку неизвестного параметра θ

Задача 5

Пусть $X = (X_1,...,X_n)$ случайная выборка из биномиального распределения Bi(5,p) , где $p \in (0;1)$.

- а) найдите информацию Фишера ($I_n(p)$).
- б) подберите константу c так, чтобы оценка $\hat{p} = c \cdot \bar{X}$ оказалась несмещенной.
- в) является ли оценка \hat{p} из предыдущего пункта эффективной и состоятельной.

Задача 6

Пусть $X = (X_1, ..., X_n)$ случайная выборка из биномиального распределения Bi(15,p) , где $p \in (0;1)$.

- а) найдите информацию Фишера ($I_n(p)$).
- б) подберите константу c так, чтобы оценка $\hat{p} = c \cdot \bar{X}$ оказалась несмещенной.
- в) является ли оценка \hat{p} из предыдущего пункта эффективной и состоятельной.

Задача 7

Пусть $X=(X_1,...,X_n)$ случайная выборка из биномиального распределения Bi(25,p), где $p\in(0;1)$.

- а) найдите информацию Фишера ($I_n(p)$).
- б) подберите константу c так, чтобы оценка $\hat{p} = c \cdot |\overline{X}|$ оказалась несмещенной.

в) является ли оценка \hat{p} из предыдущего пункта эффективной и состоятельной.

Задача 8

Пусть $X = (X_1, ..., X_n)$ случайная выборка из биномиального распределения Bi(20,p), где $p \in (0;1)$.

- а) найдите информацию Фишера ($I_n(p)$).
- б) подберите константу c так, чтобы оценка $\hat{p} = c \cdot \bar{X}$ оказалась несмещенной.
- в) является ли оценка \hat{p} из предыдущего пункта эффективной и состоятельной.

Пример второй расчетной работы:

Задача 1

В течение месяца студентки участвовали в программе, предложенной фитнесцентром. В таблице приведены значения веса 12 участниц до и после программы. Найдите 95%-ный доверительный интервал для изменения веса в результате программы (укажите, какие предположения вы использовали при этом).

	1	2	3	4	5	6	7	8	9	10	11	12
До	70.0	61.5	55.1	82.2	49.0	55.8	64.2	78.2	65.1	61.1	57.1	59.3
После	72.0	61.0	56.5	80.0	49.3	55.0	67.9	78.1	65.7	61.3	58.0	59.2

Задача 2

Пусть p_1 и p_2 — доли сторонников запрета на курение в ресторанах среди мужчин и женщин. Для оценки разности p_1-p_2 произведены две выборки мужчин и женщин размера и каждая и получены выборочные пропорции p_1 и p_2 . Определите размер выборки n, необходимый для того, чтобы интервал $p_1-p_2\pm 0.05$ накрывал p_1-p_2 с вероятностью не меньшей 80%.

Задача 3

Предположим, X - оценка студента по курсу теории вероятностей — имеет нормальное распределение $N(\mu_{m_6}, \sigma^2)$, а Y — оценка студента по курсу математической статистики — имеет нормальное распределение $N(\mu_{MC}, \sigma^2)$. Ниже представлены случайные выборки размеров 5 и 8.

$$x_1=64,\; x_2=49,\; x_3=53,\; x_4=46,\; x_5=57,$$
 $y_1=62,\; y_2=47,\; y_3=49,\; y_4=66,\; y_5=54,\; y_6=50,\; y_7=55,\; y_8=52$ Найдите 90%-ный доверительный интервал для $\mu_{ms}-\mu_{mc}$.

Залача 4

В опросе Newsweek был задан вопрос: «Предпочли бы вы жить в районе с преимущественно белым, преимущественно афроамериканским или смешанным населением?» Пусть p_1 , p_2 пропорции белых и афроамериканских респондентов, предпочитающих районы со смешанным населением. 207 из 305 афроамериканских респондентов и 291 из 632 белых предпочли район со смешанным населением. Найдите 90%-ный доверительный интервал для $p_1 - p_2$.

Задача 5

Психологи утверждают, что смена области деятельности стимулирует интеллект. В качестве эксперимента руководство компании обязало 10 менеджеров пройти интенсивный

полугодовой курс китайской философии с обязательным экзаменом. Менеджер, не сумевший сдать экзамен, увольнялся из компании. Все сдали экзамен. Их зарплаты до эксперимента и через год после него представлены в таблице. Найдите 95%-ный доверительный интервал для среднего изменения зарплаты участника эксперимента. (Укажите, какие предположения вы использовали при этом.)

()	1 7 7								
До	70.0	81.5	55.1	82.2	49.0	55.8	64.2	78.2	65.1	61.1
После	72.0	61.0	66.5	90.0	69.3	75.0	67.9	78.1	85.7	71.3

Задача 6

Перед приемной кампанией 2006 г. В РЭШ было принято решение о существенном снижении требований к абитуриентам на вступительном экзамене по математике. Распределение оценок, полученных абитуриентами на экзаменах в 2005 и 2006 гг., в случайных выборках размера 50 приведено в таблице. Найдите 95%-ный доверительный интервал для среднего изменения оценок абитуриентов в результате принятого решения. (Укажите какие предположения вы использовали при этом.)

Оценка	100	95	90	85	80	75	70	65	60	55
2005Γ	2	1	0	0	10	5	10	7	6	9
2006Γ	0	0	5	5	8	7	8	4	8	5

Задача 7

Имеется 80 наблюдений пуассоновской случайной величины X. Их среднее значение равно $\bar{X}=1.7$. Тестируйте на 5%-ном уровне значимости гипотезу $H_0:\lambda=2$ против альтернативной гипотезы $H_1:\lambda\neq 2$ при помощи теста отношения правдоподобия.

Задача 8

Имеется 80 наблюдений бернуллиевской случайной величины X с параметром p. Их выборочное среднее значение равно $\overline{X}=0.3$. Тестируйте на 5%-ном уровне значимости гипотезу $H_0: p=0.5$ против альтернативной гипотезы $H_1: p<0.5$ при помощи теста отношения правдоподобия.

Задача 9

Игральный тетраэдр бросили 100 раз. Числа 1, 2, 3, 4 выпали 50, 30, 10 и 10 раз соответственно. Проверьте, верно ли, что единица выпадает вдвое чаще, чем двойка, с помощью:

- А) критерия отношения правдоподобия
- Б) критерия согласия Пирсона

Задача 10

В таблице приведены данные по составу студентов математического и биологического факультетов университета. Тестируйте гипотезу о равном отношении юношей и девушек к математике двумя способами и рассчитайте

Соответствующие р-значения при помощи:

- (а) критерия согласия Пирсона;
- (6) теста равенства двух пропорций, например, равенства долей юношей-математиков и юношей-биологов.

	Юноши	Девушки
Математика	101	85
Биология	94	120

Вид: Подготовка к практическим занятиям

Краткая характеристика — в ходе подготовки к практическим занятиям рекомендуется решить задачи, задаваемые для самостоятельной работы, на основе примеров, разбираемых на практических занятиях.

Рекомендации для подготовки: разбор практических примеров, продемонстрированных на лекциях и решенных на практических занятиях.

Вид: Проработка лекций

Краткая характеристика — в ходе подготовки к практическим занятиям рекомендуется изучить основную литературу, ознакомиться с дополнительной литературой, новыми публикациями в периодических изданиях, а также, при необходимости использовать информационные ресурсы, рекомендованные рабочей программой дисциплины Рекомендации для подготовки:

- Изучение лекционного материала по теме
- Изучение рекомендованной основной и дополнительной литературы
- Ответы на дополнительные теоретические вопросы для практических занятий

Тема 1. Некоторые одномерные распределения, используемые в математической статистике

- 1. Основные свойства Хи-квадрат распределения,
- 2. Основные свойства распределения Стьюдента и Фишера. Их.
- 3. Работа с таблицами распределений.

Тема 2. Основные понятия статистики

- 1. Репрезентативность выборки. Эмпирическая функция распределения.
- 2. Полигон частот и гистограмма.
- 3. Выборочные моменты и квантили.
- 4. Выборочный коэффициент корреляции.
- 5. Асимптотическое поведение выборочных моментов.
- 6. Стратифицированная случайная выборка.
- 7. Стратифицированное выборочное среднее.
- 8. Дисперсия выборочного среднего при оптимальном и при пропорциональном размещении.

Тема 3. Статистическое оценивание неизвестных параметров распределений

- 1. Точечные оценки.
- 2. Свойства оценок: несмещенность, состоятельность, эффективность.
- 3. Метод моментов и метод наибольшего правдоподобия.
- 4. Оценка параметров биномиального, нормального и равномерного распределений.
- 5. Информация Фишера. Неравенство Рао-Крамера-Фреше.

Тема 4 Доверительные интервалы

- 1. Понятие о доверительных интервалах и принципах их построения.
- 2. Доверительные интервалы для среднего при известной и неизвестной дисперсии.
- 3. Доверительные интервалы для пропорции.
- 4. Доверительные интервалы для дисперсии.
- 5. Доверительные интервалы для разности двух средних
- 6. Асимптотические доверительные интервалы для параметров функции правдоподобия.
- 7. Дельта-метод.

Тема 5. Статистическая проверка гипотез

1. Проверка гипотез. Простые и сложные гипотезы.

- 2. Критерий выбора между основной и альтернативной гипотезами.
- 3. Уровень значимости. Ошибки первого и второго рода. Мощность критерия. Наиболее мощный критерий.
- 4. Проверка гипотез и доверительное оценивание.
- 5. Параметрические гипотезы.
- 6. Проверка гипотез о математическом ожидании, пропорции и дисперсии.
- 7. Проверка гипотез о разности двух средних, разности двух пропорций.
- 8. Проверка гипотез о равенстве двух дисперсий нормальных распределений.
- 9. Критерий отношения правдоподобия.
- 10. Критерии согласия: Критерий Пирсона хи-квадрат.
- 11. Критерий согласия Колмогорова.
- 12. Проверка гипотезы о независимости признаков.
- 13. Проверка гипотезы об однородности данных.

Тема 6. Непараметрические критерии

- 1. Непараметрические критерии.
- 2. Критерий знаков.
- 3. Критерии Вилкоксона, Манна-Уитни.
- 4. Коэффициент корреляции Спирмена.

Тема 7. Дисперсионный анализ

- 1. Однофакторный дисперсионный анализ
- 2. Многофакторный дисперсионный анализ

Тема 8. Введение в Байесовские методы

- 1. Байесовский подход к оцениванию параметров и прогнозированию.
- 2. Априорное и апостериорное распределение.
- 3. Сопряжённые распределения.
- 4. Байесовские интервалы.
- 5. Монте Карло по схеме марковской цепи.
- 6. Алгоритм Гиббса.
- 7. Алгоритм Метрополиса-Гастингса.
- 8. Байесовские аналоги классических тестов.

Вид Подготовка к контрольной работе

Краткая характеристика - задания направлены на проверку знаний, умений и навыков расчета показателей, построения эконометрических моделей, анализа и интерпретации полученных результатов, применения инструментальных средств для обработки данных позволяют оценить компетенции, формируемые в результате изучения дисциплины.

Рекомендации для подготовки:

- изучение лекционного материала по пройденным темам;
- разбор задач, изученных на лекционных и практических занятиях;
- решение дополнительных задач по пройденным темам.

Пример контрольной работы 1:

Минимум (40 баллов)

Задача 1. (10 баллов) С помощью нормальных случайных величин дайте определение случайной величины, имеющей хи-квадрат распределение. Для хи-квадрат распределённой случайной величины укажите диапазон возможных значений, математическое ожидание и дисперсию. Нарисуйте функцию плотности при разных степенях свободы.

Задача 2. (12 баллов). Дана реализация случайной выборки независимых одинаково

распределенных случайных величин: 11, 4, 6, -2, 0. Выпишите определения и найдите значения следующих характеристик:

- а) (2 балла) вариационного ряда,
- б) (2 балла) выборочного среднего,
- в) (2 балла) выборочной дисперсии,
- г) (2 балла) несмещенной оценки дисперсии,
- д) (2 балла) выборочного второго начального момента.
- е) (2 балла) Постройте выборочную функцию распределения.

Задача 3. (8 баллов) Ресторанный критик ходит по трём типам ресторанов (дешевых, бюджетных и дорогих) города N для того, чтобы оценить среднюю стоимость бизнес-ланча. В городе 40% дешевых ресторанов, 50% — бюджетных и 10% — дорогих. Стандартное отклонение цены бизнес-ланча составляет 10, 30 и 60 рублей соответственно. В ресторане критик заказывает только кофе. Стоимость кофе в дешевых/бюджетных/дорогих ресторанах составляет 150, 300 и 600 рублей соответственно, а бюджет исследования — 30 000 рублей.

- а) (5 балла) Какое количество ресторанов каждого типа нужно посетить критику, чтобы как можно точнее оценить среднюю стоимость бизнес-ланча при заданном бюджетном ограничении (округлите полученные значения до ближайших целых)?
- б) (3 балла) Вычислите дисперсию соответствующего стратифицированного среднего.

Задача 4. (10 баллов) Рост и размер обуви (X, Y) взрослого мужчины хорошо описывается двумерным нормальным распределение с математическим ожиданием (178, 42) и ковариационной матрицей

$$C = \begin{pmatrix} 49 & 5,6 \\ 5,6 & 1 \end{pmatrix}$$

- а) (3 балла) Какой процент мужчин обладает ростом выше 185 см?
- б) (3 балла) Являются ли рост и размер обуви случайно выбранного мужчины независимыми? Обоснуйте ответ.
- в) (4 балла) Среди мужчин с ростом 185 см, каков процент тех, кто имеет размер обуви, меньший сорок второго $P(Y < 42 \mid X = 185)$

Основная часть (60 баллов)

Задача 5. (15 баллов) Случайная выборка $X_1, ..., X_n$ взята из распределения с плотностью

$$f(x) = \begin{cases} \frac{4x^3}{\theta^4}, & npu \ x \in [0, \theta], \\ 0, & uhave. \end{cases}$$

- а) (5 баллов) С помощью метода максимального правдоподобия найдите оценку неизвестного параметра.
- б) (5 баллов) Проверьте, является ли полученная оценка несмещённой? Асимптотически несмещённой?
- в) (5 баллов) Проверьте, является ли полученная оценка состоятельной?

Задача 6. (35 баллов) Вася тратит на обед время X, которое хорошо описывается равномерным распределением на отрезке $[\theta, 2\theta]$.

- а) (5 балла) Методом моментов, используя первый момент, найдите оценку θ .
- б) (5 балла) Проверьте, будет ли эта оценка несмещённой?
- в) (10 балла) Проверьте, будет ли эта оценка эффективной и состоятельной?
- г) (15 баллов) Маша утверждает, что оценка $\vartheta_2 = \min\{X_1, \ldots, X_n\}$ эффективнее, чем оценка

метода моментов, найденная с помощью первого момента. Проверьте утверждение Маши для оценок, построенных по выборке из двух наблюдений.

Пример контрольной работы 2:

Теоретический минимум

Вопрос I (10 баллов). Есть две независимые случайные выборки: выборка $X = \left(X_1, X_2, ..., X_{n_X}\right)$ размера n_X из нормального распределения $N\left(\mu_X, \sigma_X^2\right)$ и выборка $Y = \left(Y_1, Y_2, ..., Y_{n_Y}\right)$ размера n_Y из нормального распределения $N\left(\mu_Y, \sigma_Y^2\right)$, укажите формулу для статистики, проверяющей гипотезу о разнице математических ожиданий при известных дисперсиях, и её распределение при справедливости основной гипотезы $H_0: \mu_X - \mu_Y = \Delta_0$.

Задачный минимум:

Задача I (10 баллов). Длина хвоста взрослого бобра хорошо описывается нормальным распределением с математическим ожиданием μ и дисперсией σ^2 . Вася поймал четырех бобров и произвел замеры их хвостов. Результаты (в сантиметрах) оказались следующими: 32, 26, 28, 24. Помогите Васе построить 95%-й доверительный интервал для длины хвоста взрослого бобра.

Задача 2 (15 баллов). Длина хвоста взрослого бобра на запрудах «Х» и «Y» хорошо описываются нормальными распределениями с параметрами (μ_X, σ_X^2) и (μ_Y, σ_Y^2) соответственно. Вася поймал четырех бобров на запруде «Х» и три бобра на запруде «Y» и произвел замеры их хвостов. Результаты (в сантиметрах) оказались следующими: 32, 26, 28, 24 — для запруды «Х» и 26, 24, 28 — для запруды «Y». На уровне значимости 5% помогите Васе проверить гипотезу $H_0: \sigma_X^2 = \sigma_Y^2$ против гипотезы $H_1: \sigma_X^2 > \sigma_Y^2$.

Задача 3 (15 баллов)

В психологическом эксперименте 140 студентов были разделены на две группы по выбранным ими специальностям, подчеркивающим способности левого полушария мозга LH (философия, физика, математика и т. п.) или правого полушария мозга RH (музыка, театр, танец и т. п.). Студенты также были разделены на три группы в соответствии с доминированием руки (правша, RN; переученный левша, LI; левша, LN).

	LH	RH
RN	89	29
LI	5	4
LN	5	8

Можно ли на основании этих данных отвергнуть гипотезу о независимости выбора специальности от доминирования руки? Используйте 5%-ный уровень значимости.

Основная часть:

Задача 4 (20 баллов). На уроке по литературе Вася подсаживается за парту или к Маше, или к Свете или к Вовочке. Учительница литературы Марья Ивановна любит проводить внезапные сочинения на внезапные темы. Вася пишет такие сочинения либо на двойку, либо на тройку. Других результатов у Васи не бывает.

Имеются следующие данные о 100 сочинениях, написанных Васей:

	сидел с Машей	сидел со Светой	сидел с Вовочкой
за сочинение двойка	10	15	25
за сочинение тройка	25	15	10

На уровне значимости 1% протестируйте гипотезу о том, что Васина оценка за сочинение не зависит от того, с кем сидит Вася.

 $3adaчa\ 5\ (30\ баллов)$. Студенты Вася и Маша независимо друг от друга каждый учебный день пытаются вовремя добраться до университета. Вася и Маша опаздывают с вероятностями p и q соответственно. За 100 дней Вася опоздал 30 раз, а Маша — 20 раз.

- а) Постройте 90%-й асимптотический доверительный интервал для разницы вероятности опоздания Васи и Маши.
- б) На уровне значимости 0.1 проверьте гипотезу о том, что Вася и Маша опаздывают с равной вероятностью.
- 4. Рекомендации по самоподготовке к промежуточной аттестации по дисциплине Вопросы для самопроверки к дифференцированному зачету
- 1. Математическая постановка задач статистики.
- 2. Два определения выборки. Эмпирическое распределение.
- 3. Выборочные характеристики как оценки генеральных.
- 4. Лемма Фишера.
- 5. Требования, предъявляемые к оценкам параметров.
- 6. Метод моментов. Свойства оценок метода моментов.
- 7. Метод максимального правдоподобия. Свойства оценок.
- 8. Достаточные статистики и их применения.
- 9. Доверительные интервалы.
- 10. Асимптотические доверительные интервалы.
- 11. Модель линейной регрессии. Оценка метода наименьших квадратов.
- 12. Теорема Гаусса-Маркова.
- 13. Доверительное оценивание параметров линейной регрессии.
- 14. Проверка гипотез о параметрах линейной регрессии.
- 15. Основные понятия задачи проверки гипотез.
- 16. Проверка параметрических гипотез в гауссовских моделях.
- 17. Критерии согласия, свободные от распределения.
- 18. Критерии однородности, свободные от распределения.
- 19. Критерий согласия хи-квадрат для простых гипотез.
- 20. Критерий согласия хи-квадрат для сложных гипотез
- 21. Критерий хи-квадрат для гипотез однородности и независимости.
- 22. Лемма Неймана-Пирсона.
- 23. Ранги и порядковые статистики.
- 24. Локально наиболее мощные ранговые критерии.
- 25. Предельные распределения статистик ранговых критериев.
- 26. Моделирование вероятностных распределений.
- 27. Марковские методы Монте-Карло.
- 28. ЕМ-алгоритм.