Документ подписан простой электронной подписью

Информация о владельце: ФИО: Романчук Иван Сергеевич

Должность: Ректор

Дата подписания: 29.01.2025 12:05:32 Уникальный программный ключ:

6319edc2b582ffdacea443f01d5779368d0957ac34f5cd074d81181530452479

Приложение к рабочей программе дисциплины

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Наименование дисциплины Химический анализ объектов окружающей среды

Направление подготовки /

Специальность

04.03.01 Химия

Направленность (профиль) /

Специализация

Химия

Форма обучения очная

Разработчик Ларина Наталья Сергеевна, профессор кафедры

органической и экологической химии

1. Темы дисциплины для самостоятельного освоения обучающимися Отсутствуют.

2. План самостоятельной работы

No	Учебные встречи	Виды	Форма	Количество	Рекомендуемый
п/п	-	самостоятельной работы	отчетности/ контроля	баллов	бюджет времени на выполнение (ак.ч.)*
1	2	3	4	5	6
1	Приоритетные контролируемые параметры природной среды и рекомендуемые методы	Проработка лекций. Работа с литературой, интернет источниками.	Опрос	0	1
2	Отбор проб природных объектов, предварительная подготовка, консервация и хранение	Проработка лекций, ГОСТов по отбору проб различного состава. Отбор проб природных объектов по группам.	Тестирование, презентация, доклад (по группам)	5	2
3	Обработка результатов измерений. Образцы сравнения и приемы унификации процедуры анализа. Интерпретация полученных данных	Проработка лекций, знакомство с нормативными документами по внедрению методик в практику. Обработка результатов внедрения методики.	Тестирование, презентация, доклад. Отчет по внедрению методик в условиях сходимости, воспроизводи мости и точности.	20	7
4	Особенности и проблемы элементного анализа ООС	Чтение обязательной и дополнительной литературы. Подготовка презентации и доклада по методам анализа.	Тестирование, презентация, доклад.	5	2
5	Атомно- спектральные и масс-спектральные методы	Чтение обязательной и дополнительной литературы. Подготовка презентации и доклада.	Тестирование, презентация, доклад.	5	3
6	Электрохимические	Чтение	Тестирование,	5	3

	методы	обязательной и	презентация,		
		дополнительной	доклад.		
		литературы.			
		Подготовка			
		презентации и			
		доклада.			
7	Атмосфера и	Проработка	Тестирование,	15	7
	контроль ее	лекций, обработка	презентация,		
	загрязнения	результатов	доклад.		
		измерений	Отчет по		
			анализу		
			природных		
			образцов (в		
			группах)		
8	Контроль качества	Проработка	Тестирование,	5	3
	природных и	лекций.	презентация,		
	сточных вод	Подготовка	доклад.		
		доклада,			
		презентации			
9	Контроль	Проработка	Тестирование,	5	3
	загрязнения почвы	лекций.	презентация,		
		Подготовка	доклад.		
		доклада,			
		презентации			
10	Подготовка к зачету	Проработка	Опрос	0	7
		лекций.			
11				Итого	38

3. Требования и рекомендации по выполнению самостоятельных работ обучающихся, критерии оценивания

Устный опрос обучающихся в ходе лекционных и лабораторных занятий

Данное оценочное средство используется на каждом занятии. Оцениваются фактические знания студентов, глубина понимания изучаемого материала, способности вычленения и интерпретации целостных смысловых конструкций, а также навыки критической оценки информации, с которой обучающийся работал в процессе подготовки к занятию. Полный развернутый правильный ответ оценивается максимальным количеством баллов. Неполный правильный ответ (ответ, содержащий неточности) оценивается в процентах от максимального количества баллов. Неправильный ответ не оценивается.

Примерные вопросы:

- 1. Приоритетные контролируемые параметры природной среды, их характеристика.
- 2. На примере наиболее важных показателей качества окружающей среды выбрать наиболее подходящие методы для их анализа.
- 3. Какие существуют способы отбора проб объектов окружающей среды?
- 4. Как выбор объекта и метода мониторинга зависит от целей и задач исследования?
- 5. Перечислите основные методы пробоподготовки объектов окружающей среды.
- 6. Как осуществляется в аккредитованной лаборатории внедрение методик?
- 7. Что называется повторяемостью, сходимостью, воспроизводимостью, точностью, правильностью в аналитической химии.
- 8. Основные способы приготовления растворов.
- 9. Метод градуировочного графика.

- 10. Оценка точности анализа с использованием метода добавок, добавок с разбавлением, анализ стандартного образца.
- 11. Какие существуют способы устранения мешающих влияний посторонних веществ (на примере конкретных методик).

Презентации и доклады

Презентации и доклады предполагают ознакомление обучающихся с современным уровнем публикаций по теме курса, знакомство с современными методами анализа объектов окружающей среды, нормативными документами.

Подготовка доклада по определенной теме (которая определяется преподавателем, либо обучающимся самостоятельно, по согласованию с преподавателем) подразумевает самостоятельное изучение публикаций по темам курса и региональным проблемам, предполагает глубокую проработку вопроса, систематизацию материала и краткое его изложение. Цель подготовки доклада — привитие обучающемуся навыков краткого и лаконичного представления собранных материалов и фактов в соответствии с требованиями, предъявляемыми к научным отчетам, обзорам и статьям.

При оценке выступления оценивается — качество доклада и презентации, глубина проработки материала, ответы на вопросы, участие в дискуссии по докладам.

• Примерные темы докладов и презентаций

- по способам отбора, подготовки и анализа проб объектов окружающей среды (атмосфера, гидросфера, литосфера, биосфера) групповая работа
- по сущности методов анализа и их применения к объектам окружающей среды (индивидуальная работа)
- Жидкостная хроматография. Исследовательский комплекс: Система жидкостной хроматографии Agilent 1260 Infinity II с времяпролетным масс-спектрометром высокого разрешения Agilent 6545B Q-TOF;
- Газовая хроматография. Система газовой хроматографии Agilent 7890B с массспектрометром 5977B и модулем для пиролитического разложения TGA / PY 3030D (Frontier, Япония).
- Хроматограф газовый для определения состава природного газа и следов серосодержащих компонентов в одном анализаторе «Хроматээк-Кристалл 9000» (Хроматэк, Россия).
- Атомно-абсорбционная спектроскопия. Атомно-абсорбционный спектрофотометр с пламенным и электротермическим атомизаторами АА-7000 (Шимадзу, Япония).
- Гель-хроматография. Комплекс для гель-проникающей хроматографии Agilent 1260 Infinity II (Аджилент, Германия).
- Эмиссионная спектроскопия. Оптико-эмиссионный спектрометр с индуктивносвязанной плазмой PlasmaQuant PQ 9000 (Analytik Jena, Германия).
- Электрофоретическая хроматография. Система капиллярного электрофореза "Капель-205" (Люмэкс, Россия)
- УФ-спектроскопия. УФ-ВИД спектрофотометр с интегрирующей сферой UV-2600 (Шимадзу, Япония).
- ИК-спектроскопия. ИК-Фурье спектрометр Agilent Cary 630 FTIR (Аджилент, Малайзия)
- Электрохимические методы анализа. Автоматический потенциометрический титратор в комплекте с управляющей станцией Т5 (Mettler Toledo, Швейцария).
- Фотометрические методы анализа, их использование в анализе объектов окружающей среды.

Отчеты по лабораторным работам и их защита

При выполнении лабораторных работ студенты разбиваются на несколько групп, каждая из которых выбирает объект (водоем, почва, атмосфера, растительность) на территории города и производит отбор проб для анализа.

Примерные темы лабораторных работ

- **1.** Пробоотбор и пробоподготовка проб объектов окружающей среды. Приготовление растворов и построение градуировочных графиков.
- 2. Внедрение используемых методик. Определение метрологических характеристик методики в условиях повторяемости, воспроизводимости, оценка точности измерений. Оформление отчета
- 3. Определение основных геохимических показателей сред (рН, электропроводность и др.). Анализ природных сред на содержание основных загрязнителей и макрокомпонентов. Обработка результатов анализа. Контроль качества проведенных измерений. Оформление отчета.
- 4. Групповая работа: оценка экологического состояния природных объектов на основе полученных результатов определения химического состава объектов окружающей среды. Оформление отчета, презентации, доклада. Защита работы. Дискуссия.
- 5. Пробоотбор и пробоподготовка проб. Анализы первого дня. Пробоотбор и пробоподготовка почв. Механический состав почв. Гигроскопическая влажность почв.
- 6. Анализ природных сред на содержание тяжелых металлов методом атомноабсорбционной спектроскопии и инверсионной вольтамперометрии. Обработка результатов анализа.
 - 7. Анализ природных сред на содержание нефтепродуктов.
- 8. Определение содержания органического вещества в исследуемом объекте. Обработка результатов анализа.
- 9. Определение основных геохимических показателей сред (pH, электропроводность и др.).
 - 10. Контроль качества проведенных измерений. Оформление отчета.

По каждому блоку лабораторных работ (внедрение методики, анализ реальных образцов) обучающиеся оформляют два отчета, включающие следующие разделы: название работы, цель работы, краткая теория, ход определения, результаты эксперимента и расчеты, вывод. Каждый отчет защищается устно, с пояснением сущности производимых операций в ходе определения, анализ и оценка полученных результатов, оценка качества исследуемого объекта по измеренному показателю или по исследуемому объекту. При необходимости отчет дорабатывается в соответствии с замечаниями.

4. Рекомендации по самоподготовке к промежуточной аттестации по дисциплине

Для организации текущего контроля успеваемости обучающихся в течение семестра используется 100-балльная рейтинговая система оценки успеваемости. Зачет может быть выставлен по результатам текущего контроля. Применяемые в дисциплине формы текущего контроля позволяют оценить выполнение студентом всех видов работ, учебную дисциплину, мотивацию и активность студента в учебной деятельности. Обязательным условием для получения зачета по баллам является выполнение всех лабораторных исследований.

Форма промежуточной аттестации - зачет.

Для студентов, не набравших необходимого количества баллов зачет проводится в устной форме по билетам.

Вопросы к зачету

- 1. Особенности природных сред как объектов анализа.
- 2. Пробоотбор, общие требования, способы проведения. Консервация и хранение. Пробоподготовка.
 - 3. Основные метрологические характеристики методов анализа. Нормальное

распределение результатов. Погрешность анализа. Образцы сравнения и стандартные образцы состава. Межлабораторный эксперимент. Его роль в обеспечении качества химического анализа.

- 4. Общая характеристика элементного состава природных сред. Кларки элементов. Способы выражения концентраций.
- 5. Макрокомпоненты поверхностных вод. Порядок определения в пробе. Классификация вод по макрокомпонентному составу и минерализации.
- 6. Потенциометрические методы в анализе вод. Принцип метода. Определение рН. Кондуктометрические методы анализа. Принцип метода. Определение минерализации.
 - 7. Методика определения карбонатной щелочности.
 - 8. Принцип разделения смеси ионов на ионнообменной смоле.
 - 9. Функциональные группы катионообменных и анионообменных смол.
- 10. Параметры, варьируемые при оптимизации процесса жидкостной ионной хроматографии.
 - 11. Блок-схема одноколоночного и двухколоночного ионного хроматографа.
 - 12. Форма пика в жидкостной ионной хроматографии.
 - 13. Идентификация и количественный анализ в жидкостной ионной хроматографии.
- 14. Инструментальные методы определения микроэлементного состава объектов окружающей среды. Схема аналитической процедуры.
- 15. Предел обнаружения элемента. Связь погрешности анализа и концентрации элемента.
 - 16. Сущность атомно-абсорбционного анализа.
 - 17. Основные узлы атомно-абсорбционного спектрофотометра и их назначение.
- 18. Процессы, происходящие в пламенных атомизаторах, типы и механизмы матричных влияний.
- 19. Выбор оптимальных условий анализа в электротермическом атомно-абсорбционном анализе. Способы устранения влияний.
- 20. Факторы, влияющие на пределы обнаружения в пламенном и электротермическом атомно-абсорбционном анализе.
 - 21. Способы подавления и устранения влияний в атомно-абсорбционном анализе.
 - 22. Способы учета неселективного поглощения в ААС.
 - 23. Источники монохроматического излучения в ААС.
 - 24. Введение проб в газообразной форме в ААС-анализе.
- 25. Атомные эмиссионные спектры. Потенциалы возбуждения и ионизации. Их связь с периодической системой элементов. Правило отбора. Резонансные линии, «последние» линии.
 - 26. Процессы излучения и поглощения в плазме.
 - 27. Интенсивность атомных и ионных линий спектра.
- 28. Связь интенсивности спектральных линий элементов с их концентрацией. Формула Ломакина-Шайбе. Самопоглощение. Сплошной фон.
- 29. Схема спектрального анализа. Источники возбуждения спектров в атомно-эмиссионном анализе.
- 30. Типы и особенности газовых разрядов, применяемых в атомно-эмиссионном анализе в качестве источников возбуждения спектров.
- 31. Пробоподготовка в атомно-эмиссионном спектральном анализе с дуговым возбуждением спектров: анализ твердых веществ и растворов.

Для подготовки к лекционным и лабораторным занятиям необходимо использовать нормативные документы (ГОСТ, РД, ПНД Φ), научные статьи и учебную литературу из списка.

Рекомендуемая литература:

1. Ларина, Наталья Сергеевна. Практикум по химико-экологическому мониторингу окружающей среды : [учебное пособие] / Н. С. Ларина, В. Г. Катанаева, Н. В. Ларина.

Шадринск: Дом Печати, 2007. 390 с.; 20 см. ISBN 978-5-7142-0842-3.

- 2. Хаустов, Александр Петрович. Экологический мониторинг : учебник для вузов / А. П. Хаустов, М. М. Редина. 2-е изд., испр. и доп. Москва : Юрайт, 2020. 543 с. (Высшее образование) . ISBN 978-5-534-10447-9 : 1499.00.
- 3. Латышенко, Константин Павлович. Экологический мониторинг : учебник и практикум для вузов / К. П. Латышенко. Москва : Юрайт, 2020. 381 с. (Высшее образование) . ISBN 978-5-534-01328-3 : 989.00.
- 4. Каракеян, Валерий Иванович. Экологический мониторинг: учебник для вузов / В. И. Каракеян, Е. А. Севрюкова; под общей редакцией В. И. Каракеяна. Москва: Юрайт, 2020. 397 с. (Высшее образование). ISBN 978-5-534-02491-3: 1229.00.
- 5. Волкова, Ирина Владимировна. Оценка качества воды водоемов рыбохозяйственного назначения: учебное пособие для вузов / И. В. Волкова, Т. С. Ершова, С. В. Шипулин. 2-е изд., испр. и доп. Москва: Юрайт, 2020. 294 с. (Высшее образование). ISBN 978-5-534-08549-5: 1179.00.

Электронные образовательные ресурсы:

http://e-library.ru

http://e.lanbook.com

http://ximfak.ru/stroenie-veshhestva.html

http://biology.krc.karelia.ru/misc/hydro/