Документ подписан простой электронной подписью

Информация о владельце: ФИО: Романчук Иван Сергеевич

Должность: Ректор

Дата подписания: 14.02.2025 15:42:18 Уникальный программный ключ:

6319edc2b582ffdacea443f01d5779368d0957ac34f5cd074d81181530452479

Приложение к рабочей программе дисциплины

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Наименование дисциплины Строение вещества и квантовая химия

Направление подготовки /

Специальность

04.03.01 Химия

Направленность (профиль) /

Специализация

Химия

Форма обучения

очная

Разработчик(и) Шигабаева Гульнара Нургаллаевна., заведующий

кафедрой органической и экологической химии, Алхимова Лариса Евгеньевна, ассистент Школы

естественных наук

1. Темы дисциплины для самостоятельного освоения обучающимися Отсутствуют.

2. План самостоятельной работы

- 30	2. План самостоятел	1		TC	D v
№ п/п	Учебные встречи	Виды самостоятельной работы	Форма отчетности/ контроля	Количество баллов	Рекомендуемый бюджет времени на выполнение (ак.ч.)*
1	2	3	4	5	6
1	Структурализм в химии	Изучение лекционного материала, чтение обязательной и дополнительной литературы	Устный опрос	0	1
2	Математический блок. Производные и интегралы	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
3	Микромеханика	Изучение лекционного материала, чтение обязательной и дополнительной литературы	Устный опрос	0	1
4	Математический блок. Теория вероятности, статистика	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
5	Амплитуды вероятности	Изучение лекционного материала, чтение обязательной и дополнительной литературы	Устный опрос	0	1
6	Математический блок. Комплексные числа, их связь с тригонометрически ми функциями	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
7	Математический формализм КМ	Изучение лекционного материала, чтение обязательной и дополнительной литературы	Устный опрос	0	1
8	Математический блок. Векторы и векторные пространства, сферические	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1

	координаты				
9	Операторы наблюдаемых	Изучение лекционного материала, чтение обязательной и дополнительной литературы	Устный опрос	0	1
10	Математический блок. Матрицы и операторы, теория графов	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
11	Многочастичные системы в КМ	Изучение лекционного материала, чтение обязательной и дополнительной литературы	Устный опрос	0	1
12	Математический блок. Основы симметрии, точечные группы симметрии	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
13	Описание частиц. Свободная частица	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
14	Статистические ансамбли	Изучение лекционного материала, чтение обязательной и дополнительной литературы	Устный опрос	0	1
15	Описание частиц. Частица в потенциальном ящике	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
16	Описание частиц. Плоский ротатор	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
17	Атомные ядра	Изучение лекционного материала, чтение обязательной и дополнительной литературы	Устный опрос	0	1
18	Описание частиц. Гармонический осциллятор	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
19	Описание частиц.	Изучение	Решение	1,5	1

	Атом водорода	материалов	задач и		
		практического занятия	кейсов		
20	Многоэлектронные	Изучение	Устный	0	1
	атомы	лекционного	опрос		
		материала, чтение			
		обязательной и			
		дополнительной			
		литературы			
21	Описание частиц.	Изучение	Решение	1,5	1
	Водородоподобные	материалов	задач и		
	атомы	практического	кейсов		
		занятия			-
22	Описание молекул.	Изучение	Решение	1,5	1
	Молекула водорода	материалов	задач и		
		практического	кейсов		
		занятия			
23	Молекулы	Изучение	Устный	0	1
		лекционного	опрос		
		материала, чтение			
		обязательной и			
		дополнительной			
2.4		литературы		1.5	1
24	Описание молекул.	Изучение	Решение	1,5	1
	Молекулы	материалов	задач и		
	подобные водороду	практического	кейсов		
25	0	занятия	D	1.5	1
25	Описание молекул.	Изучение	Решение	1,5	1
	Метод Хюккеля	материалов	задач и кейсов		
		практического	кеисов		
26	Ядерный остов	занятия	Устный	0	1
20	лдерный остов	Изучение			1
		лекционного материала, чтение	опрос		
		обязательной и			
		дополнительной			
		литературы			
27	Описание молекул.	Изучение	Решение	1,5	1
-	Метод Хюккеля	материалов	задач и	1,0	•
		практического	кейсов		
		занятия			
28	Описание молекул.	Изучение	Решение	1,5	1
	Вычислительные	материалов	задач и		
	методы	практического	кейсов		
	, ,	занятия			
29	Внешние поля и	Изучение	Устный	0	1
	спектроскопия	лекционного	опрос		
	1	материала, чтение	•		
		обязательной и			
		дополнительной			
		литературы			
			•		

30	Описание молекул. Вычислительные методы	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
31	Применение КМ. Инфракрасная спектроскопия	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
32	Применение КМ. Термохимия	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
33	Применение КМ. Спектроскопия ультрафиолетового и видимого диапазонов	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
34	Применение КМ. Ядерный магнитный резонанс	Изучение материалов практического занятия	Решение задач и кейсов	1,5	1
35	Применение КМ. Межмолекулярные взаимодействия	Изучение материалов практического занятия	Решение задач и кейсов	1,5	2
36	Применение КМ. Механизмы реакций	Изучение материалов практического занятия	Решение задач и кейсов	1,5	2
37	Дифференцированн ый зачет	Подготовка к зачету	Проработка лекционных и практическ их занятий		10
38	Итого			36	48

3. Требования и рекомендации по выполнению самостоятельных работ обучающихся, критерии оценивания

Подготовка к практическим занятиям.

На протяжении всего курса потребуется использование персонального компьютера для работы с конспектами практических занятий и учебными материалами, а также для выполнения задач и кейсов, размещенных на цифровых платформах университета. Для выполнения некоторых заданий потребуется специализированное ПО: пакет Microsoft Office, визуализаторы и редакторы молекул (Avogadro, ChemCraft, Jmol, MolView и др.), программный пакет для расчетов методами квантовой химии (Orca), редакторы кода для Python (Visual Studio Code, PyCharm, Jupyter Notebook и др.). Инструкции по работе в специализированном ПО представлены на цифровых платформах университета.

4. Рекомендации по самоподготовке к промежуточной аттестации по дисциплине Перечень контрольных вопросов и типовых задач для дифференцированного зачета:

- 1) Основные понятия структурализма: частица, взаимодействие, структура. Структурные уровни.
- 2) Физические и математические модели. Относительность и ограниченность моделей.
 - 3) Фундаментальные и остаточные взаимодействия, их особенности.
- 4) Механический способ описания структур. Основные понятия: наблюдаемая, состояние, уравнения состояния и эволюции.
- 5) Основные механические модели: свободная частица, частица в потенциальном ящике, гармонический осциллятор, плоский ротатор, статистический ансамбль.
- 6) Многочастичные системы: глобальное и локальное описание. Одноэлектронное приближение. Атомные и молекулярные орбитали. Принцип Паули.
- 7) Атомные ядра их состав и характеристики. Ядерные силы, устойчивость ядер. Нуклонные энергетические уровни, спектроскопия ЯГР. Ядерные реакции.
- 8) Атомы, их состав и характеристики. Узловая структура и плотность электронного облака. Многоэлектронные атомы. Электронная конфигурация и энергия многоэлектронного. Атомные термы и их расщепление.
- 9) Методы построения электронной волновой функции молекул (ВС и МО). Типы МО (КМО и ЛМО). Гибридизация АО. Сопряжение.
- 10) Понятие о поверхности потенциальной энергии молекулы (ППЭ). Геометрическая форма молекул. Топология молекулы. Структурно-нежесткие молекулы.
- Колебания молекул. Модели одномерного и многомерного осцилляторов.
 Колебательная спектроскопия. Вращения молекул. Вращательные переходы. Принципы ЯМР-спектроскопии.
- 12) Поляризуемость атомов и молекул, ее природа и типы. Магнитная восприимчивость атомов и молекул. Взаимодействие молекул с окружающей средой. Суммы по состояниям.
- 13) Межмолекулярные взаимодействия. Равновесные и диссипативные структуры, их сходство и различия. Кристаллические и аморфные структуры, промежуточные типы.
- 14) Диссипативные структуры. Условия образования. Типы ДС: пространственные, временные, автоволновые.

Типовые задачи:

- 1) Вычислить амплитуду указанного события.
- 2) Вычислить заряд атома и порядок связи.
- 3) Описать пространственную симметрию молекулы.
- 4) Описать узловую структуру орбитали.
- 5) Построить энергетическую диаграмму атома или молекулы.

Литература.

- 1. Ширяев, А. К. Квантовая механика и квантовая химия: учебно-методическое пособие / А. К. Ширяев. Квантовая механика и квантовая химия, 2025-02-06. Электрон. дан. (1 файл). Самара: Самарский государственный технический университет, ЭБС АСВ, 2017 121 с. Гарантированный срок размещения в ЭБС до 06.02.2025 (автопролонгация). Книга находится в премиум-версии ЭБС IPR BOOKS. Текст. электронный. URL:http://www.iprbookshop.ru/90518.html (дата обращения: 09.01.2025). Режим доступа: по подписке.
- 2. Боженко, К. В. Основы квантовой химии: учебное пособие / К. В. Боженко. Основы квантовой химии, Весь срок охраны авторского права. Электрон. дан. (1 файл). Москва: Российский университет дружбы народов, 2010 128 с. Весь срок охраны авторского права. Книга находится в премиум-версии ЭБС IPR BOOKS. Текст. электронный. URL:http://www.iprbookshop.ru/11404.html (дата обращения: 09.01.2025). Режим доступа: по подписке.