Документ подписан простой электронной подписью

Информация о владельце: ФИО: Романчук Иван Сергеевич

Должность: Ректор

Дата подписания: 05.03.2025 17:33:33 Уникальный программный ключ:

6319edc2b582ffdacea443f01d5779368d0957ac34f5cd074d81181530452479

Приложение к рабочей программе дисциплины

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Наименование дисциплины Гидродинамическое моделирование

Направление подготовки /

Специальность

03.04.02 Физика

Направленность (профиль) /

Специализация

Геология и разработка месторождений нефти и газа

Форма обучения очная

Разработчик(и) Ванин В.А., доцент

1. Темы дисциплины для самостоятельного освоения обучающимися: отсутствуют.

2. План самостоятельной работы

No॒	Учебные встречи	Виды	Форма	Количество	Рекомендуемый
Π/Π		самостоятельной	отчетности/	баллов	бюджет
		работы	контроля		времени на
					выполнение
					(ак.ч.)*
1	2	3	4	5	6
1	Ремасштабирование	1. Проработка	1. Конспект	0-5	21
	геологической модели	лекций.	лекций.		
	для задач ГДМ	2. Выполнение	2.		
2	Создание	тестовых заданий	Тестирование		
	гидродинамической	3. Решение задач	3. Задачи		
	модели, задание				
	начальных и				
	граничных условий				
3	Этапы моделирования:				
	адаптация на историю				
	разработки				
4	Этапы				
	моделирования:				
	формирование				
	прогнозных вариантов				
	расчета				
5	Этапы				
	моделирования:				
	анализ				
	чувствительности к				
	входным данным,				
	анализ				
	неопределенностей				

3. Требования и рекомендации по выполнению самостоятельных работ обучающихся, критерии оценивания

Самостоятельная работа охватывает темы, изучаемые в течение дисциплины (модуля).

Вид: Выполнение тестовых заданий

Краткая характеристика: тестирование - система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений по темам, самостоятельную работу студента. Тест состоит из 25 вопросов с четырьмя вариантами ответов, правильным считается один ответ.

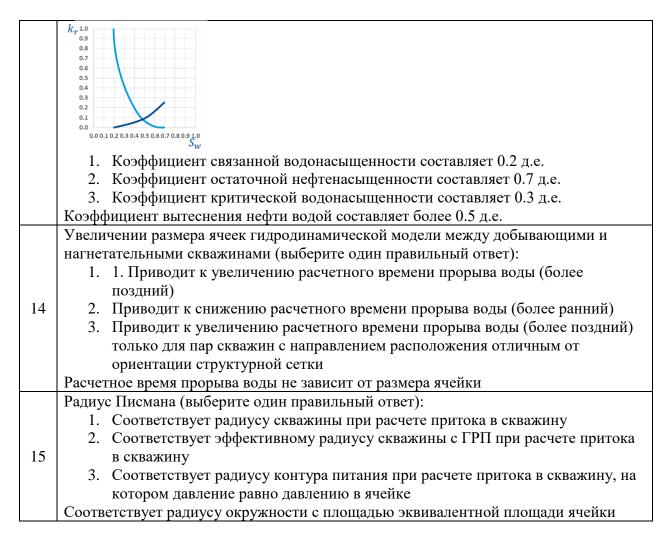
Вид: Проработка лекций.

Краткая характеристика: комплект лекций по дисциплине.

Критерии оценивания:

- наличие полного конспекта лекций по дисциплине (модулю), оценивается максимальным количеством баллов;
- отсутствие / неполный комплект конспекта лекций по дисциплине (модулю) оценивается в зависимости от их количества и рассчитывается в процентах от максимального балла.

Вид: Решение задач


Краткая характеристика: задачи - выполнение действий или мыслительных операций, направленных на достижение цели, заданной в рамках проблемной ситуации, которая позволяет автоматизировать процедуру измерения уровня знаний и умений по темам, самостоятельную работу студента. На изучение тем предоставляется 3 задачи разного уровня.

- наличие полного выполнения решения задачи по дисциплине (модулю), оценивается максимальным количеством баллов;
- отсутствие / неполного решения задач по дисциплине (модулю) оценивается в зависимости от их количества и рассчитывается в процентах от максимального балла.

Примерные тестовые задания

No					
п/п	Вопросы				
1	 Что такое гидродинамический симулятор? (выберите один правильный ответ): 1. Программный продукт для подготовки исходной информации при построении гидродинамической модели 2. Программный продукт для визуализации результатов моделирования 3. Программный продукт, в котором реализованы методы решения уравнений гидродинамики Программный продукт, реализующий полный цикл моделирования 				
2	Какие из приведенных свойств ячеек модели являются дискретными? (выберите несколько правильных ответов): 1. Активность ячейки 2. Доля коллектора (песчанистость) 3. Абсолютная проницаемость Петрофизическая группа (петротип)				
3	Какие из приведенных свойств ячеек модели являются динамическими? (выберите несколько правильных ответов): 1. Абсолютная проницаемость 2. Водонасыщенность 3. Доля коллектора (песчанистость) Давление				
4	Структурная сетка, в которой ячейка может быть представлена только параллелепипедом (выберите один правильный ответ): 1. Геометрии угловой точки (Corner-point) 2. Декартова (Cartesian) 3. Воронова (PEBI) Радиальная (Radial)				
5	Какие из приведенных типов моделей являются моделями флюидов (выберите несколько правильных ответов): 1. Модель Черной нефти (Black oil) 2. Изотермическая модель 3. Модель двойной пористости Композиционная модель				
6	Какие из приведенных видов структурных сеток являются структурированными (выберите несколько правильных ответов): 1. Геометрии угловой точки (Corner-point) 2. Декартова (Cartesian) 3. Воронова (PEBI)				

	Депо (Скошенные ячейки, Depo)			
	Какой тип модели фильтрационной среды характеризуется наличием проницаемой			
	матрицы (порового пространства) и высокопроницаемых трещин (выберите один			
	правильный ответ):			
7	1. Модель Одинарной пористости			
	2. Модель Двойной пористости			
	3. Модель Одинарной проницаемости			
	Модель Двойной проницаемости			
8	Какие из приведенных мероприятий позволят сократить время (ускорить) расчета гидродинамической модели (выберите несколько правильных ответов):			
	1. Использование более производительного процессора (СРU)			
	2. Использование параллельных вычислений			
	3. Ремасштабирование модели (Upscaling)			
	Адаптация модели на историю разработки			
	Какие из перечисленных характеристик свойственны модели Черной нефти (Black			
	oil) (выберите несколько правильных ответов):			
	1. Имеет низкую вычислительную сложность и низкую сложность построения			
	модели			
9	2. Углеводородные флюиды (фазы) представлены 2 компонентами: нефть и газ			
	3. Физические свойства флюидов в каждой ячейке рассчитываются на основе уравнения состояния			
	Корректно описывает процессы (фазовые изменения) при разработке			
	месторождений вблизи критической точки			
	Переходной зоной для нефтяного месторождения является			
	(выберите один правильный ответ):			
	1. Регион от водонефтяного контакта до уровня, где достигается связанная			
	водонасыщенность			
10	2. Регион от зеркала свободной воды до водонефтяного контакта			
	3. Регион от зеркала свободной воды до уровня, где достигается связанная			
	водонасыщенность Регион от зеркала свободной воды до уровня, где достигается остаточная			
	нефтенасыщенность			
	Какие из приведенных параметров модели могут быть изменены при адаптации			
	модели на фактические данные истории разработки (выберите несколько			
	правильных ответов):			
11	1. Параметры законтурной области (водоносного горизонта)			
	2. Начальное пластовое давление			
	3. Физические свойства флюидов			
	Относительные фазовые проницаемости			
	Увеличение каких из приведенных параметров ячеек модели приводит к росту их проводимости (выберите несколько правильных ответов):			
	проводимости (выоерите несколько правильных ответов): 1. Абсолютная проницаемость			
12	2. Длина ячейки в направлении потока			
	3. Площадь сечения ячейки перпендикулярно потоку			
	Вязкость флюида			
13	На рисунке представлены относительные фазовые проницаемости, заданные в			
13	модели. Выберите верные утверждения (выберите несколько правильных ответов):			

Задача 1

1. Типы гидродинамических моделей:

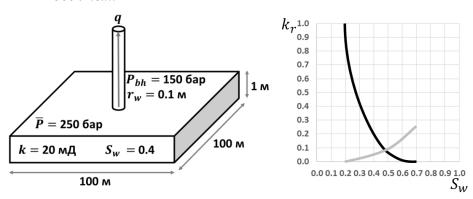
Для описания потоков в коллекторах с разной структурой пустотного пространства используются три типа гидродинамических моделей по способу представления фильтрационной среды.

Укажите <u>два</u> типа данных моделей, опишите различия между ними и приведите по <u>одному</u> примеру применения для каждой из них.

Разностные схемы:

Для численного решения уравнения пьезопроводности используются явная и неявная разностные схемы.

Приведите <u>одно</u> различие между данными схемами, указав является ли оно достоинством или недостатком для каждой из них.


Задача 2

2. Численное моделирование притока в скважину:

Скважина перфорирует одну из ячеек гидродинамической модели. На рисунке представлены геометрические размеры и свойства ячейки, а также параметры скважины на определенном временном шаге. Значения вязкости нефти и воды составляют 1 сП и 0.3 сП, а объемные коэффициенты нефти и воды -1.2 м 3 /м 3 и 1 м 3 /м 3 соответственно.

Объясните понятие радиус Писмана и запишите уравнение для расчета притока в скважину из ячейки, используя его в выражении.

Определите обводненность скважины при расчете притока из ячейки модели. Коэффициент для перевода дебитов флюидов в m^3 /сут при использовании значений параметров в единицах измерения задания равен 1/18.7. Округление проводить до десятых.

Задача 3

3. Математические модели пласта:

Геологическая модель является основой для построения гидродинамической модели. Приведите не менее <u>пяти</u> параметров/компонентов моделей (при этом не более двух свойств ячеек среди них), указав какие из них являются общими, а какие характерны только для гидродинамической модели.

Граничные условия:

Назовите и коротко охарактеризуйте <u>два</u> способа задания граничных условий (<u>не</u> модели водоносных горизонтов) для секторной гидродинамической модели.

Для сокращения количества ячеек в модели приток из законтурной области описывается моделями водоносных горизонтов.

Укажите по <u>одному</u> сходству и различию между моделями водоносных горизонтов постоянного давления и Фетковича. Объясните на каком основании будет сделан выбор в пользу одной или другой модели.

4. Рекомендации по самоподготовке к промежуточной аттестации по дисциплине Оценка результатов самостоятельной работы организуется как самоконтроль.

При выполнении самостоятельной работы рекомендуется использовать:

- комплект учебно-методической документации по дисциплине, основную и дополнительную литературу,
- интернет-ресурсы:

https://grebennikon.ru/ Электронная библиотека Grebennikon

https://eduvideo.online/ Видеотека «Решение»

https://icdlib.nspu.ru/ Межвузовская электронная библиотека (МЭБ)

https://rusneb.ru/ Национальная электронная библиотека