Документ подписан простой электронной подписью

Информация о владельце: ФИО: Романчук Иван Сергеевич

Должность: Ректор

Дата подписания: 04.03.2025 13:11:32 Уникальный программный ключ:

6319edc2b582ffdacea443f01d5779368d0957ac34f5cd074d81181530452479

Приложение к рабочей программе дисциплины

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Наименование дисциплины Асимптотические методы

Направление подготовки /

Специальность

01.03.03 Механика и математическое моделирование

Направленность (профиль) /

Специализация

Механика жидкости, газа и плазмы

Форма обучения очная

Разработчик(и) Звонарев Д.С., старший преподаватель кафедры

фундаментальной математики и механики

1. Темы дисциплины для самостоятельного освоения обучающимися Отсутствуют.

2. План самостоятельной работы:

	Z. HIJIAH CAMOCI	оятельной работы:	T	1	
№ п/ п	Учебные встречи	Виды самостоятельной работы	Форма отчетности / контроля	Количе ство баллов	Рекомен дуемый бюджет времени на выполне ние (ак.ч.)
1	2	3	4	5	6
1	Основные определения и понятия	Проработка лекций. Подготовка к лабораторным занятиям. Выполнение расчетных заданий.	Решение задач. Фронтальный, индивидуальный и другие формы опроса	2	6
2	Прямые разложения и источники неравномерностей	Проработка лекций. Подготовка к лабораторным занятиям. Выполнение расчетных заданий.	Решение задач. Фронтальный, индивидуальный и другие формы опроса	2	6
3	Алгебраические уравнения, содержащие малый параметр	Проработка лекций. Подготовка к лабораторным занятиям. Выполнение расчетных заданий.	Решение задач. Фронтальный, индивидуальный и другие формы опроса	2	6
4	Уравнение Дюффинга	Проработка лекций. Подготовка к лабораторным занятиям. Выполнение расчетных заданий.	Решение задач. Фронтальный, индивидуальный и другие формы опроса	2	6
5	Линейный осциллятор с затуханием	Проработка лекций. Подготовка к лабораторным занятиям. Выполнение расчетных заданий.	Решение задач. Фронтальный, индивидуальный и другие формы опроса	2	6
6	Системы с квадратичными и кубическими нелинейностями	Проработка лекций. Подготовка к лабораторным занятиям. Выполнение расчетных заданий.	Решение задач. Фронтальный, индивидуальный и другие формы опроса	2	6
7	Задачи с пограничным слоем	Проработка лекций. Подготовка к лабораторным	Решение задач. Фронтальный, индивидуальный и	2	6

		занятиям.	другие	формы		
		Выполнение	опроса			
		расчетных заданий.				
8	Контрольные работы	Подготовка к	Контрольная			
		контрольным	работа	(решение	0	27
	раооты	работам	задач)			
9	Дифференцирован ный зачет	Подготовка к дифференцированн ому зачету	Контрольная			
			работа	(решение	0	17
			задач).		U	
			Собеседова	ание		
10				Итого	14	86

- 3. Требования и рекомендации по выполнению самостоятельных работ обучающихся, критерии оценивания.
 - 1) Основные определения и понятия.

В ходе подготовки к занятиям требуется освоить основные термины и понятия, разобрать примеры решения задач.

В ходе подготовки к занятиям рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата А4.

Примеры задач:

а) Определить порядок следующих выражений при
$$\varepsilon \to 0$$
:
$$\sqrt{\varepsilon(1-\varepsilon)}, \qquad \ln(1+5\varepsilon), \qquad \frac{\varepsilon^{\frac{3}{4}}}{1-\cos\varepsilon}.$$
 b) Расположить следующие функции в порядке убывания при малых ε :
$$e^{-\frac{1}{\varepsilon}}, \qquad \ln\frac{1}{\varepsilon}, \qquad \varepsilon^{\frac{3}{2}}, \qquad e^{-\frac{1}{\varepsilon}}.$$

$$e^{-\frac{1}{\varepsilon}}$$
, $ln\frac{1}{\varepsilon}$, $\varepsilon^{\frac{3}{2}}$, $e^{-\frac{1}{\varepsilon}}$.

2) Прямые разложения и источники неравномерностей.

В ходе подготовки к занятиям требуется освоить основные термины и понятия, разобрать примеры решения задач.

В ходе подготовки к занятиям рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата А4.

Примеры задач:

а) Найти первые три члена разложений следующих функций при малом ε :

$$cos\sqrt{1-\varepsilon t}$$
, $\sqrt{1-\frac{1}{2}\varepsilon+2\varepsilon^2}$.

3) Алгебраические уравнения, содержащие малый параметр.

В ходе подготовки к занятиям требуется освоить основные термины и понятия, разобрать примеры решения задач.

В ходе подготовки к занятиям рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата А4.

Примеры задач:

а) Определить три члена разложения для каждого корня уравнения при малом ϵ :

$$x^2 - (2 + \varepsilon)x - 3 + 2\varepsilon = 0$$

b) Определить три члена разложения для каждого корня уравнения при малом ϵ :

$$\varepsilon x^4 + x^2 - 3x + 2 = 0$$

4) Уравнение Дюффинга.

В ходе подготовки к занятиям требуется освоить основные термины и понятия, разобрать примеры решения задач.

В ходе подготовки к занятиям рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата А4.

Примеры задач:

- а) Рассмотреть уравнение $\ddot{x} \omega_0^2 x = \varepsilon \dot{x}^2 x$, $\varepsilon \ll 1$:
 - построить двучленное прямое разложение решения и исследовать его равномерность;
 - с помощью метода перенормировки сделать это разложение равномерно пригодным;
 - построить равномерно пригодное разложение первого порядка с помощью методики Линдштедта-Пуанкаре;
 - используя метод многих масштабов, построить равномерно пригодное разложение первого порядка;
 - используя метод усреднения, построить равномерно пригодное разложение первого порядка.
- 5) Линейный осциллятор с затуханием.

В ходе подготовки к занятиям требуется освоить основные термины и понятия, разобрать примеры решения задач.

В ходе подготовки к занятиям рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата А4.

Примеры задач:

a) Рассмотреть уравнение
$$\ddot{x} + \frac{\delta x}{1 + \varepsilon \cos 2t} = 0$$
:

- построить разложение второго порядка для уравнений переходных кривых вблизи точек $\delta = 0$, $\delta = 1$, $\delta = 4$.
- используя метод Уиттекера, построить разложение второго порядка для решения х в окрестности этих кривых.
- 6) Системы с квадратичными и кубическими нелинейностями.

В ходе подготовки к занятиям требуется освоить основные термины и понятия, разобрать примеры решения задач.

В ходе подготовки к занятиям рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата A4.

Примеры задач:

- а) Рассмотреть уравнение $\ddot{x} 2x x^2 + x^3 = 0$. Показать, что положения равновесия системы, описываемой этим уравнением, определяются координатами x=0,-1,2. Построить равномерно пригодное разложение второго порядка при малых, но конечных амплитудах с помощью:
 - метода Линдштедта-Пуанкаре;
 - метода многих масштабов;
 - обобщенного метода усреднения.
- 7) Задачи с пограничным слоем.

В ходе подготовки к занятиям требуется освоить основные термины и понятия, разобрать примеры решения задач.

В ходе подготовки к занятиям рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата А4.

Примеры задач:

- а) Рассмотреть краевую задачу: $\varepsilon y'' + y' = 1$, $y(0) = \alpha$, $y(1) = \beta$.
 - найти точное решение;
 - используя методы сращиваемых асимптотических разложений и многих масштабов, построить равномерно пригодное разложение первого порядка;
 - сопоставить результаты.
- 8) Контрольные работы

В ходе подготовки к занятиям требуется освоить основные термины и понятия, разобрать примеры решения задач.

В ходе подготовки к занятиям рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата А4.

9) Дифференцированный зачет

В ходе подготовки к дифференцированному зачету требуется освоить основные термины и понятия, разобрать примеры решения задач, разобрать задачи из контрольных и домашних работ.

В ходе подготовки к дифференцированному зачету рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, разобрать задачи из контрольных и домашних работ, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата А4.

4. Рекомендации по самоподготовке к промежуточной аттестации по дисциплине.

Дифференцированный зачет проводится письменно в форме экзаменационной контрольной работы. Экзаменационная контрольная работа является инструментом промежуточной аттестации обучающегося в 6-м семестре. Экзаменационная контрольная работа проводится в аудитории продолжительностью 90 минут.

Рекомендации для подготовки:

В ходе подготовки к дифференцированному зачету требуется освоить основные термины и понятия, разобрать примеры решения задач, разобрать задачи из контрольных и домашних работ.

В ходе подготовки к дифференцированному зачету рекомендуется изучить материалы лекций, примеры, разобранные на лабораторных работах, разобрать задачи из контрольных и домашних работ, основную и дополнительную литературу, публикации в научных изданиях, если на них есть отсылки в лекциях, материалы, размещенные на электронных образовательных ресурсах.

Обучающийся самостоятельно выбирает дату и время выполнения задания в пределах установленного срока, задания, выполненные вне установленного срока, на проверку не принимаются. Расчеты необходимо выполнить последовательно и сопроводить комментариями собственноручно в тетради или на листах формата A4.

Вопросы для подготовки к дифференцированному зачету:

- 1. Анализ размерностей. Калибровочные функции.
- 2. Прямые разложения. Действия над разложениями.
- 3. Алгебраические уравнения, содержащие малый параметр.
- 4. Асимптотика решений дифференциальных уравнений по малому параметру.
- 5. Прямое разложение решения уравнения Дюффинга. Анализ точного решения.
- 6. Метод Линдштедта-Пуанкаре. Метод перенормировки.
- 7. Метод многих масштабов.
- 8. Метод вариации постоянных. Метод усреднения.
- 9. Линейный осциллятор с затуханием. Точное решение.
- 10. Линейный осциллятор с затуханием. Асимптотика решения.
- 11. Системы с нелинейностями. Обобщенный метод усреднения.
- 12. Метод Крылова-Боголюбова-Митропольского.
- 13. Уравнение Матье. Теория Флоке.
- 14. Метод растянутых параметров.
- 15. Метод Уиттекера.
- 16. Задачи с пограничным слоем. Метод сращиваемых асимптотических разложений.
 - 17. Задачи с двумя пограничными слоями.

Задачи для подготовки к дифференцированному зачету:

1. Определить порядок следующих выражений при $\varepsilon \to 0$:

$$\sqrt{\varepsilon(1-\varepsilon)}$$
, $\ln(1+5\varepsilon)$, $\frac{\varepsilon^{\frac{3}{4}}}{1-\cos\varepsilon}$

2. Расположить следующие функции в порядке убывания при малых ε :

$$e^{-\frac{1}{\varepsilon}}$$
, $ln\frac{1}{\varepsilon}$, $\varepsilon^{\frac{3}{2}}$, $e^{-\frac{1}{\varepsilon}}$

 $e^{-\frac{1}{\varepsilon}}, \quad ln\frac{1}{\varepsilon}, \quad \varepsilon^{\frac{3}{2}}, \quad e^{-\frac{1}{\varepsilon}}.$ 3. Найти первые три члена разложений следующих функций при малом ε :

$$cos\sqrt{1-\varepsilon t}$$
, $\sqrt{1-\frac{1}{2}\varepsilon+2\varepsilon^2}$.

4. Определить три члена разложения для каждого корня уравнения при малом є:

$$x^2 - (2 + \varepsilon)x - 3 + 2\varepsilon = 0$$

5. Определить три члена разложения для каждого корня уравнения при малом є:

$$\varepsilon x^4 + x^2 - 3x + 2 = 0$$

- 6. Рассмотреть уравнение $\ddot{x} \omega_0^2 x = \varepsilon \dot{x}^2 x$, $\varepsilon \ll 1$:
 - построить двучленное прямое разложение решения и исследовать его равномерность;
 - с помощью метода перенормировки сделать это разложение равномерно пригодным;
 - построить равномерно пригодное разложение первого порядка с помощью методики Линдштедта-Пуанкаре;
 - используя метод многих масштабов, построить равномерно пригодное разложение первого порядка;
 - используя метод усреднения, построить равномерно пригодное разложение первого порядка.
- 7. Рассмотреть уравнение $\ddot{x} + \frac{\delta x}{1 + \varepsilon \cos 2t} = 0$:
 - построить разложение второго порядка для уравнений переходных кривых вблизи точек $\delta = 0$, $\delta = 1$, $\delta = 4$.
 - используя метод Уиттекера, построить разложение второго порядка для решения х в окрестности этих кривых.
- 8. Рассмотреть уравнение $\ddot{x} 2x x^2 + x^3 = 0$. Показать, что положения описываемой ЭТИМ уравнением, равновесия системы, определяются координатами x=0,-1,2. Построить равномерно пригодное разложение второго порядка при малых, но конечных амплитудах с помощью:
 - метода Линдштедта-Пуанкаре;
 - метода многих масштабов;
 - обобщенного метода усреднения.
- 9. Рассмотреть краевую задачу: $\varepsilon y'' + y' = 1$, $y(0) = \alpha$, $y(1) = \beta$.
 - найти точное решение;
 - используя методы сращиваемых асимптотических разложений и многих масштабов, построить равномерно пригодное разложение первого порядка;
 - сопоставить результаты.