Документ подписан простой электронной подписью

Информация о владельце: ФИО: Романчук Иван Сергеевич

Должность: Ректор

Дата подписания: 04.03.2025 13:11:32 Уникальный программный ключ:

6319edc2b582ffdacea443f01d5779368d0957ac34f5cd074d81181530452479

Приложение к рабочей программе дисциплины

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Наименование дисциплины Классическая механика

Направление подготовки /

Специальность

01.03.03 Механика и математическое моделирование

Направленность (профиль)

/Специализация

Механика жидкости, газа и плазмы

Форма обучения очная

Разработчик Татосов Алексей Викторович, профессор кафедры

фундаментальной математики и механики

1. Темы дисциплины для самостоятельного освоения обучающимися

- 1. Уравнения движения.
- 2. Законы сохранения.
- 3. Интегрирование уравнений движения.
- 4. Движение твердого тела
- 5. Канонические уравнения

2. План самостоятельной работы

№ π/π	Учебные встречи	Виды самостоятельной работы	Форма отчетности/ контроля	Количество баллов	Рекомендуемый бюджет времени на выполнение (ак.ч.)
1	2	3	4	5	6
1	УВ №1, Лекционное занятие 1, «Уравнения движения»	Проработка лекционного материала	конспект	-	2
2	УВ №2, Практическое занятие 1, «Уравнения движения»	Решение задач	отчет	-	2
3	УВ №3, Лекционное занятие 2, «Уравнения движения»	Проработка лекционного материала	конспект	-	2
4	УВ №4, Практическое занятие 2, «Уравнения движения»	Решение задач	отчет	-	2
5	УВ №5, Лекционное занятие 3, «Уравнения движения»	Проработка лекционного материала	конспект	-	2
6	УВ №6, Практическое занятие 3, «Уравнения движения»	Решение задач	отчет	-	2
7	УВ №7, Лекционное занятие 4, «Уравнения движения»	Проработка лекционного материала	конспект	-	2
8	УВ №8, Практическое занятие 4, «Уравнения движения»	Решение задач	отчет	-	2
9	УВ №9, Лекционное занятие 5, «Законы сохранения»	Проработка лекционного материала	конспект	-	2
10	УВ №10, Практическое занятие 5, «Законы сохранения»	Решение задач	отчет	-	2
11	УВ №11, Лекционное занятие 6, «Законы сохранения»	Проработка лекционного материала	конспект	-	2
12	УВ №12, Практическое занятие 6, «Законы сохранения»	Решение задач	отчет	-	2

	VD 3012 H	П .		1	
13	УВ №13, Лекционное	Проработка	TO LIGHT OF THE		2
	занятие 7, «Законы	лекционного	конспект	-	2
	сохранения»	материала			
	УВ №14, Практическое				
14	занятие 7, «Законы	Решение задач	отчет	-	2
	сохранения»				
	УВ №15, Лекционное	Проработка			
15	занятие 8, «Законы	лекционного	конспект	-	2
	сохранения»	материала			
16	УВ №16, Практическое	Решение задач	отчет	-	2
	занятие 8, «Законы				
	сохранения»				
	УВ №17, Лекционное	ПС			
1.7	занятие 9,	Проработка			
17	«Интегрирование	лекционного материала	конспект	-	2
	уравнений движения»				
	УВ №18, Практическое				
10	занятие 9,	D			
18	«Интегрирование	Решение задач	отчет	-	2
	уравнений движения»				
	УВ №19, Лекционное				
	занятие 10,	Проработка лекционного	конспект	-	2
-	«Интегрирование				
	уравнений движения»	материала			
	УВ №20, Практическое				
20	занятие 10,	_			
	«Интегрирование	Решение задач	отчет	-	2
	уравнений движения»				
	УВ №21, Лекционное				
	занятие 11,	Проработка			
21	«Интегрирование	лекционного	конспект	-	2
	уравнений движения»	материала			
	УВ №22, Практическое				
	занятие 11,	_			
22	«Интегрирование	Решение задач	отчет	-	2
	уравнений движения»				
	УВ №23, Лекционное	Проработка			
23	занятие 12, «Движение	лекционного	конспект	_	2
23	твердого тела»	материала	Rollolloki		_
	УВ №24, Практическое	marophana			
24	занятие 12, «Движение	Решение задач	отчет	_	2
	твердого тела»	т ошонно зада і			_
	УВ №25, Лекционное	Проработка			
25	занятие 13, «Движение	лекционного	конспект	_	2
23	твердого тела»	материала	Rononori		_
	УВ №26, Лекционное	Проработка			
26	занятие 14, «Движение	лекционного	конспект	_	2
		материала	ROHOHOKI		
27	твердого тела»	Проработка			
	УВ №27, Лекционное	лекционного	конспект		2
	занятие 15,		конспект	-	
		материала		<u> </u>	

	«Канонические уравнения»				
28	УВ №28, Лекционное занятие 16, «Канонические уравнения»	Проработка лекционного материала	конспект	-	2
29	УВ №29, Консультация 1, "Консультация перед экзаменом"			-	6
30	УВ №30, Аттестация 1, "Экзамен"			100	6
Итого				100	68

3. Требования и рекомендации по выполнению самостоятельных работ обучающихся, критерии оценивания

Решение задач.

Данный вид заданий носит разноплановый характер, нацелен на приобретение обучающимися навыков в решении задач классической механики.

Примерное задание

1. Потенциальная энергия частицы в силовом поле имеет вид

$$U=\frac{kr^2}{2},$$

найти силу F действующую на частицу.

2. Частица находится в силовом поле

$$F = -\gamma \frac{r}{r^3},$$

определить потенциальную энергию U частицы в данном силовом поле.

- 3. Потенциальная энергия частицы определяется выражением $U = a(x^2 + y^2 + z^2)$, где a положительная размерная константа. Частица начинает двигаться из точки с координатами (3; 3; 3)(м). Найти ее кинетическую энергию T в момент, когда частица находится в точке с координатами (1; 1; 1)(м).
- 4. На гладкой горизонтальной плоскости лежат две небольшие шайбы, каждая массы m, которые соединены между собой невесомой пружинкой. Одной из шайб сообщили начальную горизонтальную скорость v_0 . Найти внутреннюю механическую энергию данной системы в процессе ее движения.
- 5. Два шара движутся навстречу друг другу вдоль прямой, проходящей через их центры. Масса и скорость первого шара равны 4 кг и 8 м/с, второго шара 6 кг и 2 м/с. Как будут двигаться шары после абсолютно неупругого соударения?
- 6. Два шара движутся навстречу друг другу вдоль оси x. Масса первого шара $m_1=0.2~{\rm kr}$, масса второго шара $m_2=0.3~{\rm kr}$. До столкновения проекции скоростей шаров на ось равны: $v_{10}=1~{\rm m/c},~v_{20}=-1~{\rm m/c}$. Найти проекции скоростей шаров v_{1x} и v_{2x} после их центрального абсолютно упругого соударения?
- 7. Некоторая планета A движется в поле тяготения Солнца C. Относительно какой точки гелиоцентрической системы отсчета момент импульса данной планеты будет сохраняться во времени? Сохраняется ли импульс p?

Рекомендации по выполнению: изучить лекционный материал и дополнительную литературу; задачи, решенные в аудитории. Выполнить домашнее задание в тетради и предоставить на проверку через неделю от даты выдачи задания. Необходимо подробно детализировать решение.

4. Рекомендации по самоподготовке к промежуточной аттестации по дисциплине.

Экзамен проходит в виде собеседования по вопросам билета. Билет состоит из двух вопросов и задачи. Ответ на каждый вопрос и решение задачи оценивается по пятибалльной системе. Результирующая оценка рассчитывается как среднее арифметическое полученных оценок с учетом ответов на дополнительные вопросы.

Досрочная оценка без сдачи экзамена может быть выведена по результатам работы в течение всего семестра и опроса студента в полном объеме дисциплины.

Рекомендации для подготовки: изучить лекционные материалы; дополнительные материалы, рекомендованные преподавателем; решить задачи, заданные преподавателем в течение семестра.

Вопросы для подготовки к экзамену:

- 1. Законы сохранения и фундаментальные свойства времени и пространства. Импульс частицы. Импульс системы частиц. Закон сохранения импульса. Центр масс. Ц-система. Движение тела переменной массы.
- 2. Работа. Мощность. Кинетическая энергия. Теорема о кинетической энергии. Консервативные силы. Потенциальное поле. Потенциальные кривые. Устойчивость. Кинетическая энергия системы частиц. Теорема Кенига. Механическая энергия системы. Закон сохранения механической энергии. Закон сохранения полной энергии. Формальное введение внутренней энергии.
- 3. Столкновение двух частиц. Абсолютно неупругое столкновение. Абсолютно упругое столкновение. Нецентральный удар. Векторная диаграмма импульсов.
- 4. Момент импульса частицы. Момент силы. Уравнение моментов. Момент импульса и момент силы относительно неподвижной оси. Момент импульса системы частиц. Закон сохранения момента импульса. Собственный момент импульса. Уравнение моментов в Цсистеме
- 5. Динамика твердого тела. Условия равновесия. Вращение вокруг неподвижной оси. Теорема Штейнера. Плоское движение твердого тела. Кинетическая энергия при плоском движении.
- 6. Закон всемирного тяготения. Потенциал и напряженность поля материальной точки, сферического слоя, однородного шара. Сила тяжести. Космические скорости. Законы Кеплера. Постановка задачи Кеплера в полярных координатах.
- 7. Введение в релятивистскую механику. Постулаты Эйнштейна. Преобразования Лоренца. Следствия из преобразований Лоренца. Сокращение длины. Замедление времени. Интервал. Закон сложения скоростей. Импульс и энергия в релятивистской механике.